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I. Introduction

A charged particie beam line is simply a set of magnets placed
in a predetemained sequence and used to transmit particles. The
trajectories of the particles begin at some point and traverse each
magnet in turn until they arrive at a final point. The beam, cr
envelope, of all such trajectories passed by the bean line, will have
characteristice at this final point which are determined by the nature
of the varicus magnets. The object of any design is to determine the
magnet charscteristics necessary to achieve certain desired bear
propertics at the end of the system.

The computations are usually dene by expressing the fina.
coordinates of a trajectory as a Taylor series expansion oI the
initial coordinstes. Since a set of six coordinates is used the
coctlicients of the expansicn are matrices. Tor systens with
initial phasc spoce it is necessary to consicder higher order tervs.

Such large initial phese space cenfigurations cccuxr meore ¢ften
in lewer energy beers. The sbility te calculate analvtically the
coefiicients would he a greoat aid in designing such beams. Such boans
would be of use in cancer,therapy, as high resoluticn electron
ricroscopes, and in nuclesxr and perticle physics.
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irstd and second® ordcr terms in thils solution hove bcen
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vorked cut and arve enployved in creating beam line dosigns. Licher
order matriy ccefficients are sufficiently complicated so as to recuirc
algebraic manipulation by counputer. We elaborate below in creater

Aeteil on how Lo obtoin such solutions.



II. 7he equations of motion

The motion of a charged particle in a static magnetic field is
given by getting the time derivative of the momentum eqﬁal to the
LoTreantz Torce,

P=qVXxB (1)

It is convenient to solve this equation in a special coordinate
system. For this purpose we define a reference trajectory of a given
momentum powhich begins at the origin and passes through each magnet
in turn, In traversing a given magnet it experiences uniform magnetic
field. 1In this sense, both magnets and beam line are somewhat idealized.

To determine the coordinates of a given point we construct a plane
containing this point through which the central trajectory passes per-
pendiculerly. The longitudinal coordinate t is the length of the cen-
tral trajectory up to the point of intersection with the plane. The
transverse coordinates x and y are the two coordinates in the constructed
plane with the reference trajectory passing througn the origin. 7To de~
scxibe the behavior of a trajectory at a given point we employ a vector

of s8ix coordinates.
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The newly appearing quantities are x' and y' which are dx/dt and
dy/dt respectively, & which is the difference in longitudinal posiiticn
from a particle on the central trajectory for egual times of flight,

v

and 6 the fractional devivation of the momentum from that of the can-

tral trajectory.
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If we then expand the eguations of motion in powers of these

coordinates we arrive at

x '+ kxzx

i

second and higher order terns (3)

i

y'' o+ kyzy second and higher order terms. (4)

Hence forth we will illustrate the problems by referring only to
equation (3). Eguatlion (4) is handled similarly. The second and

higher order terms may be represented symbolically as

second and higher order terms = EXX + FXXX + .44 (53

where E is a matrix with three indices and Exx means

the index i indicating the coordinate to which the eguation applies.

The matrix F has four indices and is defined similarly.

IiI., Sclution of the Equations

A. First Order

The first oxder eguations of moticn are obtained by taking only
these terms linear in the six cecordinates. The solutions to tais
equation are also linear and the finél set of coordinates of a tra-

jectory can be given as a transfer matrix times the initial set.
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The matrix R now represents the first order propérties of the bean
line, Beam lines are generally designed so that certain elements of
the R matrix will have certain specified values.,

Two specific solutions are of interest and will be referred to

later. They are the sine~like trajectory Sx with initial values

fl

Sx(O) 0, Sx’(O} = 1, and the cosine-like trajectory with initial

¢ = ot =
values CX(OJ 1, Lx {0) a.
The R matrix for an entire system can be obtained by multiplying
the matrices for the individual elements. Individual R matrices for

different types of magnets have been evaluated analytically.2

B. Second Crder Terms

To determine the second order terxms, namely the guadratic depen~
dences of the final coordinates on the initial ones, we now substitute
the first order solutions for the coordinates into the second order

terms on the right side of eguations (3) and (4) so that

j}z{ Eijk xj(t) xk(t) =jk£m Eijk Rjg(t) ka(t) Xx(a) xm(O) (5

If we now define a Green's function by
Gx(t,i} = Sx(t) CX(E) - Sx{ﬁ) Cx(t) , e
we can obtain second order matrix elements in the form

t
T = [ G te) g Ryt B (0) 68 (s
Qo
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The coordinates for a trajectory at the final point in a system may
now be cxpresged to second order in terms of the initial coordinates

as

Xi(l) = B R.. X. (0) + I T

L., XL (0) X_ (0 16G)
25 % 2 Tagi X300 X0 (16)

Second order transicr matrix elements for various types of magnets
. : \ 2 . . - -
have been worked out analytically. Once again, the first and second
order matrices for an entire system can be obtained by multiplying

together the matrices for individual elements.

IV, Future Extensions to Higher Orders

Once solutions for a given order have been obtained, the next hicher

[hal

order may he obtained by the iterative technique described above., To
obtain the third order matrices, one would substitute the second order
solutions ilnto the right hand sides of eguations (3) and {(4). The teims

contributing to the third order matrices would be

® =

imnp ii Eijk [%jm(t) Tknp(t) * ijn(t) Rkp(tﬂ

+ jﬁz Fijki ij(t) Rkn(t) Rlp(t) (11

and the third order matrices themselveé would be given as
t
Uimnp = | Gy (808 Ky (0) (2)
Lxtension to fourth order would be done by a similar iteration using
the third order solutions. As before, the matrices for an entire systen.
of a given order could be obtained by multiplying together matrices for

individual clement:o.



The third order coefficients in the equations of motion in an
arbitrary bending meagnet have been derived.3 The corresponding
fourth order terms have not been derived, Similarly the transier
matrices for third and fourth order have not been evaluated. Since
six coordinates are involved the number of different matrix elements
of third or fourth order is great, and the complexiity of each term
increases substantially as the order increases,

Therefore, we must conclude that the only practical way to
evaluate third and fourth order matrix elements is by using algebraic
manipulation techniques on a computer. We would first expand the
equations of motion to fourth ordex and collect terms. Then we could
isolate given terms, multiply by the Green's function, and periorm
the integrals by using substitution techniques. The final expressions
could be incorporated into beam optics computer programs.

The number of fundamentally different types of magnet is small,
so the integrals need be evaluated only a small number oI times, LCw-
ever, once done, the resulting advances in the state of the art oI

charged particle beam design would be great,
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